Snake Biology


    The now extinct Titanoboa cerrejonensis snakes found were 12–15 m (39–49 ft) in length. By comparison, the largest extant snakes are the reticulated python, which measures about 9 m (30 ft) long, and the anaconda, which measures about 7.5 m (25 ft) long and is considered the heaviest snake on Earth.
    At the other end of the scale, the smallest extant snake is Leptotyphlops carlae, with a length of about 10 cm (4 in). Most snakes are fairly small animals, approximately 1 m (3 ft) in length.



    Snakes use smell to track their prey. They smell by using their forked tongues to collect airborne particles, then passing them to the vomeronasal organ or Jacobson's organ in the mouth for examination.The fork in the tongue gives snakes a sort of directional sense of smell and taste simultaneously. They keep their tongues constantly in motion, sampling particles from the air, ground, and water, analyzing the chemicals found, and determining the presence of prey or predators in the local environment. In water-dwelling snakes, such as the Anaconda, the tongue functions efficiently under water.


    Snake vision varies greatly, from only being able to distinguish light from dark to keen eyesight, but the main trend is that their vision is adequate although not sharp, and allows them to track movements. Generally, vision is best in arboreal snakes and weakest in burrowing snakes. Some snakes, such as the Asian vine snake (genus Ahaetulla), have binocular vision, with both eyes capable of focusing on the same point. Most snakes focus by moving the lens back and forth in relation to the retina, while in the other amniote groups, the lens is stretched.

    Infrared sensitivity

    Pit vipers, pythons, and some boas have infrared-sensitive receptors in deep grooves on the snout, which allow them to “see” the radiated heat of warm-blooded prey mammals. In pit vipers the grooves are located between the nostril and the eye, in a large “pit” on each side of the head. Other infrared-sensitive snakes have multiple, smaller labial pits lining the upper lip, just below the nostrils.

    Vibration sensitivity

    The part of the body in direct contact with the ground is very sensitive to vibration; thus, a snake can sense other animals approaching by detecting faint vibrations in the air and on the ground.


    Cobras, vipers, and closely related species use venom to immobilize or kill their prey. The venom is modified saliva, delivered through fangs. The fangs of 'advanced' venomous snakes like viperids and elapids are hollow to inject venom more effectively, while the fangs of rear-fanged snakes such as the boomslang merely have a groove on the posterior edge to channel venom into the wound. Snake venoms are often prey specific—their role in self-defense is secondary.
    Venom, like all salivary secretions, is a predigestant that initiates the breakdown of food into soluble compounds, facilitating proper digestion. Even nonvenomous snake bites (like any animal bite) will cause tissue damage.
    Certain birds, mammals, and other snakes (such as kingsnakes) that prey on venomous snakes have developed resistance and even immunity to certain venoms. Venomous snakes include three families of snakes, and do not constitute a formal classification group used in taxonomy.
    The term poisonous snake is mostly incorrect. Poison is inhaled or ingested, whereas venom is injected.There are, however, two exceptions: Rhabdophis sequesters toxins from the toads it eats, then secretes them from nuchal glands to ward off predators, and a small population of garter snakes in Oregon retains enough toxin in their liver from the newts they eat to be effectively poisonous to small local predators (such as crows and foxes).
    Snake venoms are complex mixtures of proteins, and are stored in poison glands at the back of the head. In all venomous snakes, these glands open through ducts into grooved or hollow teeth in the upper jaw. These proteins can potentially be a mix of neurotoxins (which attack the nervous system), hemotoxins (which attack the circulatory system), cytotoxins, bungarotoxins and many other toxins that affect the body in different ways. Almost all snake venom contains hyaluronidase, an enzyme that ensures rapid diffusion of the venom.
    Venomous snakes that use hemotoxins usually have fangs in the front of their mouths, making it easier for them to inject the venom into their victims.[42] Some snakes that use neurotoxins (such as the mangrove snake) have fangs in the back of their mouths, with the fangs curled backwards. This makes it difficult both for the snake to use its venom and for scientists to milk them. Elapids, however, such as cobras and kraits are proteroglyphous—they possess hollow fangs that cannot be erected toward the front of their mouths, and cannot "stab" like a viper. They must actually bite the victim.
    It has recently been suggested that all snakes may be venomous to a certain degree, with harmless snakes having weak venom and no fangs. Most snakes currently labelled “nonvenomous” would still be considered harmless according to this theory, as they either lack a venom delivery method or are incapable of delivering enough to endanger a human. This theory postulates that snakes may have evolved from a common lizard ancestor that was venomous—and that venomous lizards like the gila monster, beaded lizard, monitor lizards, and the now-extinct mosasaurs may also have derived. They share this venom clade with various other saurian species.
    Venomous snakes are classified in two taxonomic families:

    Elapids – cobras including king cobras, kraits, mambas, Australian copperheads, sea snakes, and coral snakes.
    Viperids – vipers, rattlesnakes, copperheads/cottonmouths, and bushmasters.
    There is a third family containing the opistoglyphous (rear-fanged) snakes (as well as the majority of other snake species):
    Colubrids – boomslangs, tree snakes, vine snakes, mangrove snakes, although not all colubrids are venomous.